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Purpose. To demonstrate how correlations among predictor variables
in a population pharmacokinetic model affect the ability to discern
which covariates should enter into the structural pharmacokinetic
model.

Methods. Monte Carlo simulation was used to generate multiple-dose
concentration-time data similar to that seen in a Phase 111 clinical trial.
The drugs’ pharmacokinetics were dependent on two covariates. Five
data sets were simulated with increasing correlation between the two
covariates. All data sets were analyzed using NONMEM both with
and without inclusion of the covariates in the structural pharmacokinetic
model. Summary measures for ill-conditioning and sensitivity analysis
were used to examine how increasing correlation among covariates
affects the accuracy and precision of the parameter estimates.
Results. When covariates were included in the structural pharmacoki-
netic model and the correlation between covariates increased, the stan-
dard error of the parameter estimates increased and the value of
parameter estimates themselves became increasingly biased. When the
correlation between predictor variables was 0.75, the standard errors of
the parameter estimates were too large to declare statistical significance.
Conclusions. Correlations among predictor variables greater than 0.5
when entered into the model simuitaneously should be a warning to
researchers because the (1) the accuracy of the parameter estimates
themselves may be biased and (2) the precision of the estimates may
be inflated due to ill-conditioning.

KEY WORDS: NONMEM; regression diagnostics; sensitivity analy-
sis; reformulation; validation

INTRODUCTION

One goal for nonlinear mixed effect modeling is to identify
covariates that are predictors for pharmacokinetic parameters
and to incorporate these covariates into the population model
in a manner that yields good predictive power for future obser-
vations. A general modeling process was outlined by Maitre et
al. (1) and expanded upon by Mandema et al. (2). A key element
in these approaches is the filtering of covariates that have no
relationship to the parameters of interest. Common screening
methods include multiple linear regression (MLR), generalized
additive models (GAMs)?, or to skip the linear mode! screening
step and proceed directly to nonlinear model development, the
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* Collinearity also affects the ability of GAMs to model the underlying
functional relationship (20). At least in the MLR case, diagnosis and
correcting for collinearity has been addressed (3), whereas no such
diagnostics have been reported for GAMs. 1t is not the purpose of
this paper to examine the effect of collinearity of GAMs but its
adverse effects needed to be pointed out.
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idea being that model development will screen out unimpor-
tant variables.

Often the predictor variables themselves are ignored during
the model building process. It is common knowledge that corre-
lation among the covariates in linear regression will affect the
precision of the regression parameter estimates, possibly leading
to parameter estimates that are artificially statistically non-
significant (3). This effect is referred to as collinearity* and is
due to the inherent instability of inverting a near singular matrix.
When two correlated covariates enter into a lincar model simul-
tancously, compared to the case where either variable 1s entered
in the model alone, one or more of the following may occur:
(1) one or more of the regression parameter estimates becomes
statistically non-significant, (2) one or more of the regression
parameter estimates exhibit a sign change that may or may not
be physically possible, or (3) the parameter estimates associated
each covariate differ substantially. Collinearity can also affect
parameter estimates in the nonlinear mixed effect model build-
ing process when covariates are entered into the structural phar-
macokinetic model. The purpose of this article is to demonstrate
how the correlation between covariates can affect the parameter
estimates reported by a nonlinear mixed effect modeling soft-
ware package.

Theory for Nonlinear Models
Consider the general nonlinear model:
Y, =f(X, 0 +ei=12...n n

where Y, is the ith response associated with a px1 vector
of parameter estimates 6 and predictor variables X; and ¢; is
normally distributed random error with mean 0 and variance
2. One common method to estimate the variance of 9 is from
the diagonal elements of

T -1
% =N ' =0 )
ar(9) = o[/ J] o [(69. ’ (’)9,,) (391 30#)]

where J is the gradient matrix. Collinearity arises from
two sources: model collinearity and data collinearity. Model
based collinearity arises when the columns of J are correlated
with each other. A classic example of model collinearity is
found with the E,, pharmacodynamic model in which E,,, is
conditionally linear on ECs (4). Parameters that are condition-
ally linear on other parameters will have correlated parameter
estimates because one or more columns in J can be expressed
as a (near) linear combination of other columns in J. Another
type of collinearity is data-based collinecanty wherein there is
a high degree of correlation among predictor vanables. This is
not an issue with the models with a single predictor vanable.
Consequently collinearity will be due solely to the model. How-
ever when X is an nxq matrix of predictor variables that enter
into the structural model and one or more columns of X can
be written as a near linear combination of any other column
in X, then the columns of J will be correlated indirectly as a
result of X entering into the model. With population pharmaco-
kinetic models, both model-based and data-based collinearity

4 Collinearity is also referred to as multicollinearity or ill-conditioning.
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can occur simultaneously, unless of course no covariates are
included in the structural model, in which case only model-
based collinearity can occur.

The adverse effects of collinearity manifest primarily in
affecting the parameter estimates and their standard errors.
When the predictors are uncorrelated, the values of the parame-
ter estimates remain unchanged regardless of any other predictor
variables included in the model. When the predictors are corre-
lated, the value of a regression parameter depends on which
other parameters are entered into the model and which others
are not, i.c., it destroys the uniqueness of the parameter estimate.
Thus, when collinearity is present “a regression coefficient
does not reflect any inherent effect of the particular predictor
variable on the response variable but only a marginal or partial
effect, given whatever other correlated predictor variables are
included in the model” (5). Correlation between predictor vari-
ables in and of itself does not mean that a good fit cannot be
obtained nor does that predictions of new observations are
poorly inferred, provided the inferences are made within the
sample space of the data set upon which the model was derived.
What it means is that the estimated regression coefficients tend
to widely vary from one data set to the next. During drug
development there may be many different clinical trials in differ-
ent populations, if the same variables are collected in these
studies and they are correlated with each other, the situation
may occur wherein one analysis identifies a particular covariate
as being important, but another analysis using a different data
set does not.

Matrix instability may occur during the inversion of the
JTJ matrix, such that small changes in J lead to large changes
in the parameter estimates and their standard errors. In NON-
MEM (6) two matrices are computed in calculating the covari-
ance matrix: S, the sum of S; matrices calculated for each
individual where S; is equal to JTJ evaluated at the final parame-
ter estimates and R, the matrix of partial second derivatives
evaluated at the final parameter estimates. Assuming that the
errors are normally distributed, as the sample size increased
towards infinity, then R and S converge to the same matrix
and the inverse of either estimates the covariance matrix. If
normality is not assumed (the default option with NONMEM)
the matrix R7'SR™! is used to compute the covariance matrix.
Collinearity increases the degree of instability in inverting R
and S.

Summary Measures for IlI-Conditioning and
Collinearity

A variety of summary measures are available for assessing
the degree of collinearity in a linear regression, most of which
actuatly reflect the degree of instability in inverting the X’X
matrix. Similar measures can be applied to nonlinear regression.
For example, Magel and Hertsgaard (7) used variance decompo-
sition proportions (3) and the condition number of J°J to assess
the instability of nonlinear regression parameter estimates. Of
interest in NONMEM is the stability in inverting the R and/or
S matrices since these are the matrices that are inverted in the
default case for estimating the covariance matrix (6).

All matrix inversions are dependent on the determinant of
the matrix and the square root of the determinant is a general
measure of the overall “volume” of a matrix. The square root
of the determinant ranges from 0 when the columns of the matrix
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are perfectly correlated to | when the columns are uncorrelated.
Thus the square root of the determinant of the R matrix may
be a useful summary measure. However, the determinant,
denoted ||, is extremely sensitive to scaling such that |aA| =
a,|Al, e.g., a 10 fold change in A results in a 10,-fold change
in the determinant of A (8). NONMEM limits the format of
the output to exponential notation with four places, two of
which are behind the decimal. Hence, attempting to determine
the determinant of the R matrix is risky business in general,
but especially so with NONMEM output.

An alternative is to examine p, the pxp correlation matrix.
All the information contained in R is contained in p. Also, the
p matrix outputted by NONMEM is of sufficient precision that
it can be worked on with little rounding error. Thus it is a better
measure of stability than R. The index number of p, IN, is

defined as
I
IN = — )
lp

where 1, and 1, are the largest and smallest cigenvalues of p
(9). Related to the index number is simply the ratio of the
largest and smallest eigenvalue. A matrix that is ill-conditioned
has a large index number whereas a matrix that is well-condi-
tioned has a index number near one. Gleason and Staelin (10)
proposed the Redundancy Number to quantify the degree of
collinearity:

[
X P-p

i=1

pp— D

3

where |; is the ith eigenvalue of the correlation matrix. ¢ ranges
from O when the columns of p are uncorrelated to 1 when the
columns are perfectly correlated. Kullback (11) presented the
Information Statistic, I, defined as:

-1
I=-3 In(|p) C))

and the Divergence Statistic, D, defined as:
D=3 —— 5)

Both 7 and D range from 1 when all the columns are uncorrelated
to o when the columns are perfectly correlated. These statistics
fail to identify which columns are collinear and simply indicate
that collinearity is present (3). If multicollinearity is present
wherein a function of one or more columns is collinear with a
function of one or more other columns, then these statistics
will fail to identify that collinearity. Also, there has been no
research as to at what point does a summary measure indicate
“significant collinearity”. Regardless of these problems (sorne
of which may be remedied), they are useful tools for comparing
data sets.

Belsley and Oldford (12) proposed using sensitivity analy-
sis to determine how collinearity can affect the resulting param-
eter estimates. They propose adding small alterations to the
predictor variables and examining how this affects the resulting
parameter estimates. Then using Monte Carlo simulation and
repeating this process many times, plotting the parameter esti-
mates against each other can be used as a diagnostic to indicate
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Table 1. Summary Statistics for Pharmacokinetic Parameters and Covariates Generated by Monte Carlo Simulation
Correlation between covariates
Theoretical
value 0 0.25 0.5 0.75 0.95
Clearance (L/h) Log-Normal Distribution
Mean 100 106 107 107 107 107
Standard Deviation 57 57 57 57 57
CV (%) S0 54 54 54 53 54
Min 22 22 22 22 22
Median 94 94 94 93 94
Max 394 396 397 400 403
Volume of Distribution (L) Log-Normal Distribution
Mean 400 460 460 460 460 460
Standard Deviation 252 252 252 252 252
CV (%) 50 54 55 55 55 55
Min 90 89 90 89 90
Median 400 400 400 400 400
Max 1879 1879 1879 1879 1879
Absorption Rate Constant (Ka, h™h Log-Normal Distribution
Mean 0.80 0.81 0.81 0.8t 0.81 0.81
Standard Deviation 0.08 0.08 0.08 0.08 0.08
CV (%) 10 9 9 9 9 9
Min 0.61 0.61 0.61 0.61 0.61
Median 0.81 0.81 0.81 0.81 0.81
Max 1.06 1.06 1.06 1.06 1.06
Covariate #1 (X;) Log-Normal Distribution
Mean 145 145 145 145 145 145
Standard Deviation 36 36 36 36 36
CV (%) 25 24 24 24 24 24
Min 33 33 33 33 33
Median 142 142 142 142 142
Max 257 257 257 257 257
Covariate #2 (X,) Normal Distribution
Mean 28 29 28 28 28 28
Standard Deviation 4.5 44 4.4 42 4.2
CV (%) 15 16 16 15 15 15
Min 17 17 17 17 19
Median 28 28 28 28 28
Max 46 48 47 48 45

how instability in one parameter can lead to instability in
another.
Example

Five data sets were simulated using a one-compartment
model with absorption. Drug (40 mg) was given daily for 10
days. Pharmacokinetic parameters and covariates were simu-
lated with the following characteristics,

F=1
Cl ~ LN(100 L/h, 50% CV)
V, ~ LN(400 L, 50% CV)
K, ~ LN(O.8 h™', 10% CV)
Height (X;) ~ LN(145 cm, 25% CV)
Age (X2) ~ N(28 yr., 15% CV)

where LN and N indicate log-normal and normal distribution,
respectively, and CV is coefficient of variation. Correlation

between pharmacokinetic parameters and covariates was
defined as:

Cl Vg K, X X2

ciy1 07 0 03 025
Vi 1 0 0 0

p = K, 1 0 (U
X, 1 r
X, 1

where r is the correlation between X; and X,, which varied
from O to 0.95. Random deviates were generated using the
method of Johnson (13).

Five-hundred (500) subjects were simulated with two to
four plasma samples collected at random time intervals after
drug administration anywhere between day 1, time 0 to day
11, time 0. This sampling scheme simulated the situation where
a patient can simply walk in and have their blood drawn without
an appointment. The sample collection time was recorded and
exact. The analytical assay had a constant CV of 7.5% and a
limit of quantification of 0.1 ng/ml. Samples less than the LOQ
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Table 2. Correlation Among Variables Generated Using
Monte Carlo Simulation

Correlation between X, and X, = 0

Cl V4 Ka Covli Cov2
Cl 1.000 0.586 0.078 0.291 0.209
V4 1.000 0.008 —0.091 —0.060
Ka 1.000 0.079 0.048
X, 1.000 —0.059
X, 1.000
Correlation between X, and X, = 0.25

Cl vd Ka Covl Cov2
Cl 1.000 0.585 0.078 0.296 0.214
\'H 1.000 0.008 —0.091 -0.074
Ka 1.000 0.079 0.056
X, 1.000 0.180
X, 1.000
Correlation between X; and X, = 0.50

Cl Va4 Ka Covi Cov2
Cl 1.000 0.585 0.078 0.301 0.223
Vy 1.000 0.008 —-0.095 —0.086
Ka 1.000 0.079 0.063
X, 1.000 0.432
X, 1.000
Correlation between X, and X, = 0.75

Cl vd Ka Covl Cov2
Cl 1.000 0.584 0.078 0.307 0.239
Vg 1.000 0.008 —0.090 -0.093
Ka 1.000 0.079 0.070
X, 1.000 0.703
X, 1.000
Correlation between X; and X, = 0.95

Cl Vd Ka Covl Cov2
Cl 1.000 0.584 0.078 0.312 0.260
Va 1.000 0.008 —0.091 —0.090
Ka 1.000 0.079 0.075
X, 1.000 0.936
X, 1.000

Note: Correlation between Cl and Vd = 0.7. Correlation between Cl
and X, = 0.30. Correlation between Cl and X, = 0.25. Values in Bold
indicate significantly different from zero.

were defined as missing. Each data set was simulated using
PROC IML in SAS® (14).

The data were analyzed with NONMEM, version 4 (6).
The structural base model was a one-compartment model with
absorption. Cl, Vy, and K, were modeled assuming a log-normal
distribution and residual error was modeled with a constant CV
error structure. Cl was modeled with

Cl=06D)*X, +82)*X,
and without covariates in the structural model
Cl = 6(1).

Each of the five data sets (with r = 0, 0.25, 0.5, 0.75, and
0.95) was fit using the same model. NONMEM could not
estimate the correct covariance structure using an unstructured
covariance matrix so a diagonal covariance structure was
assumed. Inter-subject variability on K, could not be adequately
modeled so this was removed from the model. For each data
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set all of the summary measures for ill-conditioning were calcu-
lated to assess the stability of the parameter estimate. All calcu-
lations were done using Gauss 3.2 (15).

The method of Belsley and Oldford (12) was also applied
to the data. Uniform random error of =5 cm and *2 yr. were
added to X, and X, respectively, and the data reanalyzed. This
process was repeated 30 times. Scatter plots and whisker plots
were generated to examine the conditional and marginal distri-
bution of the eta’s, respectively.

RESULTS

Tables 1 and 2 show the summary statistics and correlations
between variables for the five data sets, respectively, and indi-
cate that the data sets generated have the sampling characteris-
tics defined a priori. Note that the only real difference between
the data sets was due to the correlation between X, and X,.
Table 3 shows a summary of the NONMEM output without
using the covariates in the model. Parameter estimates were
near their theoretical values, but were not exact, with clearance
tending to be underestimated, and K, and V4 overestimated.
Inter-subject variability was near the true value, but residual
error was higher than theoretical values. There was no difference
among parameter estimates or objective function values for the
five data sets.

Table 3 shows a summary of the NONMEM output without
using the covariates in the model. The parameter estimates were
near the theoretical values for all five data sets but were not
exact. In all five cases, clearance tended to be underestimated,
and Ka and V4 overestimated. The intersubject variability was
near the true value, but residual error was higher than theoretical
values. There was no difference among parameter estimates or
objective function values for the five data sets.

Table 4 shows a summary of the NONMEM output with
covariates included in the model. There was a distinct trend
that as the correlation between X, and X, increased (1) the
standard errors of parameter estimates increased and (2) the
value of the parameter estimates themselves decreased for 8(1),
whereas 6(2), 0(3) and 0(4) increased. When the correlation
between covariates was .75 or greater, 8(1) was not statistically
different than zero. There was no change in inter-subject vari-
ability, but there was a slight increase in residual error as the
correlation between X, and X, increased.

Table 5 shows the summary measures for the data sets
with and without covariate inclusion. Without covariates in the
model there was little change in the summary measures as the
correlation between covariates increased. There was evidence
that some degree of instability in matrix inversion was
occurring, but to what degree was unclear. When clearance was
modeled as a function of the covariates, all summary statistics
showed that collinearity dramatically increased as the correla-
tion increased. The least and most sensitive statistic appeared to
be Redundancy Number and the condition number, respectivelly.
However, the Redundancy Number was the only statistic that
was monotonically increasing with increasing correlation
between covariates.

Figures 1-3 show the results of the sensitivity analysis.
Fig. 1 is a whisker plot of the marginal distribution of the
theta’s (0) as a function of the correlation between X, and X,.
Only the distribution of 8(4), the 8 related to K,, was unaffected
by the correlation between X, and X,. Surprisingly, the mean
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Table 3. NONMEM Output Without Using Covariates in Model
Correlation between covariates
0.00 0.25 0.50 0.75 0.95
Number of Iterations 26 25 25 27 25
Objective Function 6699.8 6696.8 6703.4 6698.6 6697.6
Parameter Estimates (Standard Error)
Clearance = 8(1) * exp(eta(1)) 82.6 (2.23) 82.6 (2.23) 82.7 (2.22) 82.7 (2.21) 82.7 (22.0)
V4 = 0(2) * exp(eta(2)) 495 (21) 495 (21) 495 (20.8) 495 (20.7) 495 (20.7)
K, = 6(3) 1.16 (0.104) 1.15(0.104) 1.15(0.104) 1.15 (0.103) 1.15 (0.102)
Inter-Individual Variance (CV%)
Eta(1) = Ciearance 0.206 (48) 0.206 (48) 0.206 (48) 0.207 (48) 0.207 (48)
Eta(2) = V4 0.260 (54) 0.261 (54) 0.261 (54) 0.263 (55) 0.264 (55)
Eta(3) = K, 0.215 (49 0.216 (49) 0.218 (49) 0.222 (50) 0.230 (5I)
Residual Error Variance (CV%) 0.0288 (17) 0.0286 (17) 0.0286 (17) 0.0283 (17) 0.0279 (17)
Table 4. NONMEN Output with Covariates Included in Model
Correlation between covariates
0.00 0.25 0.50 0.75 0.95
Number of Iterations 27 33 35 38
Objective Function 6319.2 6390.7 6488.9 6567.0 6670.9
Parameter Estimates (Standard Error)
Clearance = f(8(1), 8(2), X,, X,) * exp(eta(1))
(1) 0.236 (0.072) 0.235 (0.082) 0.208 (0.098) 0.158 (0.122) 0.166 (0.109)
0(2) 1.87 (0.345) 1.86 (0.394) 1.98 (0.475) 2.22 (0.594) 2.15 (0.528)
Vq = 0(3) 459 (19) 466 (19.8) 475 21.4) 483 (23.6) 493 (28.1)
Ka = 6(4) 1.12 (0.097) 1.13 (0.098) 1.14 (0.103) 1.16 (0.109) 1.19 (0.120)
Inter-Individual Variance (CV%)
Eta(1) = Clearance 0.175 (44) 0.177 (44) 0.178 (44) 0.177 (44) 0.172 (43)
Eta(2) = Volume of Distribution 0.249 (53) 0.253 (45) 0.253 (45) 0.249 (53) 0.237 (52)
Residual Error Variance (CV%) 0.0298 (17) 0.0299 (17) 0.0312 (18) 0.0328 (18) 0.0359 (19)
Note: Clearance Modeled as 6(1) * X, + 6(2) * X,. Values in Bold indicate value equal to zero using 95% confidence interval approach.
Table 5. Summary Statistics Based on Correlation Matrix
. . Correlation between covariates
Data set without covariates
Statistic 0 0.25 0.5 0.75 0.95
Redundancy Number 0.379 0.376 0.374 0.373 0.372
Index of Matrix 4.623 4.572 4.500 4.488 4424
Square Root(Determinant) 0.202 0.207 0.210 0.211 0213
Information Statistic 1.598 1.576 1.560 1.555 1.547
Divergence Statistic 54 5.3 5.2 52 5.1
Condition Number 21 20 20 20 20
Data set with covariates Correlation between covariates
Statistic 0 025 05 075 0.95
Rédundancy Number 0.373 0.429 0.447 0475 0.495
Index of Matrix 6.175 17.008 20.123 23.452 18.820
Square Root(Determinant) 0.193 0.051 0.041 0.033 0.036
Information Statistic 1.647 2967 3.192 3417 3.325
Divergence Statistic 73 45.6 61.0 779 499
Condition Number 38 289 405 550 354
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Fig. 1. Whisker plot of the marginal distribution of the theta’s as a function of the correlation between X, and X,.
Each (x, y) datapoint was generated using Monte Carlo simulation (n = 30) wherein *5 and *2 units uniformly
distributed random error was added to X, and X,, respectively. The lowest, middle, and second highest, and highest
box points represent the 10th, 25th, 75th, and 90th quartile. Means are represented by symbols. Legend: Cl =
[8(1)X, + 6(2) *X;] *exp(eta(l)), V4 = 6(3) *expleta(2)), K, = 0(4).

values obtained with Monte Carlo simulation were closer to
the theoretical value of 0.8 h™! than the original data set was
with 8(4) ~ 1.2 h™!. For the remaining theta’s, as the correlation
between X, and X increased so did their respective CVs. When
the correlation between X; and X, was 0.75, the CV of the
theta’s had doubled relative to when X, and X, were uncorre-
lated. However, when the correlation between X, and X, was
less than or equal to 0.50, the CV of the theta’s was relatively
stable. There was little change in the mean value of 8(2) as the
correlation between X and X, increased, but the mean value of
8(1) fluctuated as the correlation between X; and X; increased.
There was also a distinct trend that as the correlation between
X, and X, increased so did the mean of 8(3), the 6 associated
with volume of distribution, getting further and further removed
from the true value of 400 L. Thus even when the covarnates
did not enter into the function for V, their presence significantly
influenced the mean and variance of the eta associated with
Vg Figs. 2 and 3 show the correlation matrix between the
theta’s expressed as a scatter plot matrix when the predictor
variables were uncorrelated and when the correlation between
X, and X, was 0.75, respectively. Both Figures clearly show

a significant correlation between all the theta’s regardless of
the correlation between the predictor variables. Correlation
between the theta’s even when the covanates were uncorrelated
indicated that model collinearity influenced the final value of
the parameter estimates. Sensitivity analysis was able to identify
which of the theta’s were affected by model based collinearity
and showed that when there was a high degree of collinearity
between predictors, small changes in the predictor variables
can lead to large changes in the parameter estimates.

DISCUSSION

The purpose of this study was to examine how correlation
among covariates affects the accuracy and precision of NON-
MEM parameter estimates. These results show that two types
of collinearity may be present in any nonlinear mixed effects
model: model-based and data-based collinearity. Both modes
of collinearity affect the point estimate itself and variance of
estimates. This should not be surprising given that as X, and
X, became more and more correlated, they began to measure
the same variable. Sensitivity analysis of the predictor variables
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Fig. 2. Scatter plot matrix of correlation between eta’s when the covariates were uncorrelated. Each (x, y) datapoint
was generated using Monte Carlo simulation (n = 30) wherein =5 and *2 units uniformly distributed random
error was added to X, and X,, respectively. The star indicates the original value of the eta’s. The lower left plot
shows the objective function for each Monte Carlo iteration. Legend: Cl = [6(]) X, + 6(2) *X;] *exp(eta(l)),

Vg4 = 6(3) *exp(eta(2)), K, = 6(4).

indicated that when the correlation among covariates was large
(approximately greater than 0.5) small changes in the predictor
variables lead to large changes in the parameter estimates mak-
ing their final values unreliable. When the correlation between
X, and X, was 0.75, the parameter estimate associated with X,
became statistically non-significant.

Sensitivity analysis offers a convenient method to deter-
mine which parameter estimates are affected by collinearity
and how changes in one parameter may lead to changes in
another parameter. This diagnostic demonstrated that, even
though X, and X, appeared in the structural model through
&(1) and 8(2), respectively, the correlation between them influ-
enced not only 8(1) and 6(2), but 8(3) as well. The fact that
increasing correlation affected 6(3) is suggestive of model-
tiased collinearity. Surprisingly, Monte Carlo sensitivity analy-
sis produced parameter estimates nearer the true value associ-
ated with K, than did the original data set. It would appear
prudent to use this technique as part of the model validation
process to ensure that parameter estimates are stable to small
changes in the covariates.

Various summary measures were presented which summa-
rized the degree of instability in the matrix inversion. All of
these statistics, except the Information statistic which requires
calculation of the determinant of the correlation matrix, can be

computed by hand directly from NONMEM output. Although
increasing collinearity did not lead to a monotonic increase in
ill-conditioning as indicated by the summary measures, the
results clearly show that as the correlation between two covari-
ates increased to above 0.5, numerical stability in the parameter
estimates became an issue.

What was not discussed in this paper is once collinearity
has been identified in a model, how do you remove it? That
question remains to be answered and further research is needed
before one becomes available. One possible solution to remove
model-based collinearity is the reformulating approach sug-
gested by Simonoff er al. (16,17). However, for data-based
collinearity only speculation can be made at this time. One
approach may be to use techniques used in the lincar case,
such as ridge regression (5), or to use some type of principal
components transformation (9). Another solution might be to
transform correlated covariates into a single composite vector
thereby eliminating one source of collinearity. For example,
height and weight could be transformed to body surface area
(18) or body mass index (19).

This study was limited to the case of two covariates show-
ing a high degree of correlation. Future research should examine
how a small to moderate degree of correlation (p<<0.4) among
a large number of covariates affects the parameter estimates.
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Fig. 3. Scatter plot matrix of correlation between eta’s when the correlation between covariates was
0.75. Each (x, y) datapoint was generated using Monte Carlo simulation (n = 30) wherein *5 and
*+2 units uniformly distributed random error was added to X, and X,, respectively. The star indicates
the original value of the eta’s. The lower left plot shows the objective function for each Monte Carlo

iteration. Legend: Cl =

Other areas include how collinearity affects the precision of
parameter estimates such that the analyst can gauge how the
observed model compares to a model that has absolutely no
collinearity. In summary, these results indicate that population
pharmacokinetic analysis should involve greater analysis of the
predictor variables prior to their introduction into the structural
pharmacokinetic model. The bottom line is that models which
include covariates showing a high degree of correlation, greater
than 0.5, when included in the model at the same time may
indicate that one or both are not relevant to the structural model
even when in fact they are.
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